Compare different DEMs for individual glaciers: RGI-TOPO for RGI v6.0#

For most glaciers in the world there are several digital elevation models (DEM) which cover the respective glacier. In OGGM we have currently implemented more than 10 different open access DEMs to choose from. Some are regional and only available in certain areas (e.g. Greenland or Antarctica) and some cover almost the entire globe.

This notebook allows to see which of the DEMs are available for a selected glacier and how they compare to each other. That way it is easy to spot systematic differences and also invalid points in the DEMs.

Input parameters#

This notebook can be run as a script with parameters using papermill, but it is not necessary. The following cell contains the parameters you can choose from:

# The RGI Id of the glaciers you want to look for
# Use the original shapefiles or the GLIMS viewer to check for the ID: https://www.glims.org/maps/glims
rgi_id = 'RGI60-11.00897'

# The default is to test for all sources available for this glacier
# Set to a list of source names to override this
sources = None
# Where to write the plots. Default is in the current working directory
plot_dir = f'outputs/{rgi_id}'
# The RGI version to use
# V62 is an unofficial modification of V6 with only minor, backwards compatible modifications
prepro_rgi_version = 62
# Size of the map around the glacier. Currently only 10 and 40 are available
prepro_border = 10
# Degree of processing level.  Currently only 1 is available.
from_prepro_level = 1

Check input and set up#

# The sources can be given as parameters
if sources is not None and isinstance(sources, str):
    sources = sources.split(',')
# Plotting directory as well
if not plot_dir:
    plot_dir = './' + rgi_id
import os
plot_dir = os.path.abspath(plot_dir)
import pandas as pd
import numpy as np
from oggm import cfg, utils, workflow, tasks, graphics, GlacierDirectory
import xarray as xr
import rioxarray as rioxr
import geopandas as gpd
import salem
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import itertools

from oggm.utils import DEM_SOURCES
from oggm.workflow import init_glacier_directories
# Make sure the plot directory exists
utils.mkdir(plot_dir);
# Use OGGM to download the data
cfg.initialize()
cfg.PATHS['working_dir'] = utils.gettempdir(dirname='OGGM-DEMS', reset=True)
cfg.PARAMS['use_intersects'] = False
2024-08-25 21:35:05: oggm.cfg: Reading default parameters from the OGGM `params.cfg` configuration file.
2024-08-25 21:35:05: oggm.cfg: Multiprocessing switched OFF according to the parameter file.
2024-08-25 21:35:05: oggm.cfg: Multiprocessing: using all available processors (N=4)
2024-08-25 21:35:07: oggm.cfg: PARAMS['use_intersects'] changed from `True` to `False`.

Download the data using OGGM utility functions#

Note that you could reach the same goal by downloading the data manually from https://cluster.klima.uni-bremen.de/data/gdirs/dems_v2/default (high resolution version: https://cluster.klima.uni-bremen.de/data/gdirs/dems_v1/highres)

# URL of the preprocessed GDirs
gdir_url = 'https://cluster.klima.uni-bremen.de/data/gdirs/dems_v2/default'
# We use OGGM to download the data
gdir = init_glacier_directories([rgi_id], from_prepro_level=1, prepro_border=10, prepro_base_url=gdir_url)[0]
2024-08-25 21:35:07: oggm.workflow: init_glacier_directories from prepro level 1 on 1 glaciers.
2024-08-25 21:35:07: oggm.workflow: Execute entity tasks [gdir_from_prepro] on 1 glaciers

Read the DEMs and store them all in a dataset#

if sources is None:
    sources = [src for src in os.listdir(gdir.dir) if src in utils.DEM_SOURCES]
print('RGI ID:', rgi_id)
print('Available DEM sources:', sources)
print('Plotting directory:', plot_dir)
RGI ID: RGI60-11.00897
Available DEM sources: ['COPDEM30', 'TANDEM', 'DEM3', 'AW3D30', 'ASTER', 'COPDEM90', 'NASADEM', 'SRTM', 'MAPZEN']
Plotting directory: /__w/tutorials/tutorials/notebooks/tutorials/outputs/RGI60-11.00897
# We use xarray to store the data
ods = xr.Dataset()
for src in sources:
    demfile = os.path.join(gdir.dir, src) + '/dem.tif'
    with rioxr.open_rasterio(demfile) as ds:
        data = ds.sel(band=1).load() * 1.
        ods[src] = data.where(data > -100, np.NaN)
    
    sy, sx = np.gradient(ods[src], gdir.grid.dx, gdir.grid.dx)
    ods[src + '_slope'] = ('y', 'x'),  np.arctan(np.sqrt(sy**2 + sx**2))

with rioxr.open_rasterio(gdir.get_filepath('glacier_mask')) as ds:
    ods['mask'] = ds.sel(band=1).load()
# Decide on the number of plots and figure size
ns = len(sources)
x_size = 12
n_cols = 3
n_rows = -(-ns // n_cols)
y_size = x_size / n_cols * n_rows

Raw topography data#

smap = salem.graphics.Map(gdir.grid, countries=False)
smap.set_shapefile(gdir.read_shapefile('outlines'))
smap.set_plot_params(cmap='topo')
smap.set_lonlat_contours(add_tick_labels=False)
smap.set_plot_params(vmin=np.nanquantile([ods[s].min() for s in sources], 0.25),
                     vmax=np.nanquantile([ods[s].max() for s in sources], 0.75))

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_mode='each',
                cbar_location='right',
                cbar_pad=0.1
                )

for i, s in enumerate(sources):
    data = ods[s]
    smap.set_data(data)
    ax = grid[i]
    smap.visualize(ax=ax, addcbar=False, title=s)
    if np.isnan(data).all():
        grid[i].cax.remove()
        continue
    cax = grid.cbar_axes[i]
    smap.colorbarbase(cax)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_topo_color.png'), dpi=150, bbox_inches='tight')
../../_images/583f3b098cd33506d580b9ac43bdb134083da28f239b63817176cb145a19f68c.png

Shaded relief#

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_location='right',
                cbar_pad=0.1
                )
smap.set_plot_params(cmap='Blues')
smap.set_shapefile()
for i, s in enumerate(sources):
    data = ods[s].copy().where(np.isfinite(ods[s]), 0)
    smap.set_data(data * 0)
    ax = grid[i]
    smap.set_topography(data)
    smap.visualize(ax=ax, addcbar=False, title=s)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_topo_shade.png'), dpi=150, bbox_inches='tight')
../../_images/ad3b0f96f9f45146ca30f469a2010764694cf3b29d76864523ac6c526ccfd2ee.png

Slope#

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_mode='each',
                cbar_location='right',
                cbar_pad=0.1
                )

smap.set_topography();
smap.set_plot_params(vmin=0, vmax=0.7, cmap='Blues')

for i, s in enumerate(sources):
    data = ods[s + '_slope']
    smap.set_data(data)
    ax = grid[i]
    smap.visualize(ax=ax, addcbar=False, title=s + ' (slope)')
    cax = grid.cbar_axes[i]
    smap.colorbarbase(cax)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_slope.png'), dpi=150, bbox_inches='tight')
../../_images/5e913b329c4dd855475b40444afbdd751d3da92230c4a479cdcf64743f73cd98.png

Some simple statistics about the DEMs#

df = pd.DataFrame()
for s in sources:
    df[s] = ods[s].data.flatten()[ods.mask.data.flatten() == 1]

dfs = pd.DataFrame()
for s in sources:
    dfs[s] = ods[s + '_slope'].data.flatten()[ods.mask.data.flatten() == 1]
df.describe()
COPDEM30 TANDEM DEM3 AW3D30 ASTER COPDEM90 NASADEM SRTM MAPZEN
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 3014.124512 3066.820068 3052.045681 3023.871970 3031.316346 3014.512695 3028.332505 3032.272219 3023.202610
std 259.403259 258.874115 237.228101 253.597569 250.883864 259.186768 247.615467 246.447678 254.144292
min 2413.545654 2469.287598 2490.000000 2417.000000 2428.000000 2416.773438 2430.000000 2450.000000 2413.000000
25% 2837.251770 2889.410828 2883.500000 2851.000000 2865.000000 2836.975037 2855.000000 2857.000000 2850.000000
50% 3044.196289 3097.242310 3068.500000 3052.500000 3058.000000 3044.824097 3054.000000 3060.000000 3051.000000
75% 3196.260803 3249.972717 3217.000000 3201.750000 3203.000000 3196.834839 3202.000000 3203.000000 3201.750000
max 3694.253174 3738.977051 3701.000000 3720.000000 3693.000000 3688.330078 3691.000000 3684.000000 3723.000000

Comparison matrix plot#

# Table of differences between DEMS
df_diff = pd.DataFrame()
done = []
for s1, s2 in itertools.product(sources, sources):
    if s1 == s2:
        continue
    if (s2, s1) in done:
        continue
    df_diff[s1 + '-' + s2] = df[s1] - df[s2]
    done.append((s1, s2))
# Decide on plot levels
max_diff = df_diff.quantile(0.99).max()
base_levels = np.array([-8, -5, -3, -1.5, -1, -0.5, -0.2, -0.1, 0, 0.1, 0.2, 0.5, 1, 1.5, 3, 5, 8])
if max_diff < 10:
    levels = base_levels
elif max_diff < 100:
    levels = base_levels * 10
elif max_diff < 1000:
    levels = base_levels * 100
else:
    levels = base_levels * 1000
levels = [l for l in levels if abs(l) < max_diff]
if max_diff > 10:
    levels = [int(l) for l in levels]
levels
[-100, -50, -20, -10, 0, 10, 20, 50, 100]
smap.set_plot_params(levels=levels, cmap='PuOr', extend='both')
smap.set_shapefile(gdir.read_shapefile('outlines'))

fig = plt.figure(figsize=(14, 14))
grid = AxesGrid(fig, 111,
                nrows_ncols=(ns - 1, ns - 1),
                axes_pad=0.3,
                cbar_mode='single',
                cbar_location='right',
                cbar_pad=0.1
                )
done = []
for ax in grid:
    ax.set_axis_off()
for s1, s2 in itertools.product(sources, sources):
    if s1 == s2:
        continue
    if (s2, s1) in done:
        continue
    data = ods[s1] - ods[s2]
    ax = grid[sources.index(s1) * (ns - 1) + sources[1:].index(s2)]
    ax.set_axis_on()
    smap.set_data(data)
    smap.visualize(ax=ax, addcbar=False)
    done.append((s1, s2))
    ax.set_title(s1 + '-' + s2, fontsize=8)
    
cax = grid.cbar_axes[0]
smap.colorbarbase(cax);

plt.savefig(os.path.join(plot_dir, 'dem_diffs.png'), dpi=150, bbox_inches='tight')
../../_images/29330eafafd60ab1d067f5e8c327f44f3eb403c855e182d6cc1e0a0dd7bbfcd4.png

Comparison scatter plot#

import seaborn as sns
sns.set(style="ticks")

l1, l2 = (utils.nicenumber(df.min().min(), binsize=50, lower=True), 
          utils.nicenumber(df.max().max(), binsize=50, lower=False))

def plot_unity(xdata, ydata, **kwargs):
    points = np.linspace(l1, l2, 100)
    plt.gca().plot(points, points, color='k', marker=None,
                   linestyle=':', linewidth=3.0)

g = sns.pairplot(df.dropna(how='all', axis=1).dropna(), plot_kws=dict(s=50, edgecolor="C0", linewidth=1));
g.map_offdiag(plot_unity)
for asx in g.axes:
    for ax in asx:
        ax.set_xlim((l1, l2))
        ax.set_ylim((l1, l2))

plt.savefig(os.path.join(plot_dir, 'dem_scatter.png'), dpi=150, bbox_inches='tight')
../../_images/737b12e43aaa5eb195311981e58f674150c6ff8d10d6b1db297654fbc6c0d1eb.png

Table statistics#

df.describe()
COPDEM30 TANDEM DEM3 AW3D30 ASTER COPDEM90 NASADEM SRTM MAPZEN
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 3014.124512 3066.820068 3052.045681 3023.871970 3031.316346 3014.512695 3028.332505 3032.272219 3023.202610
std 259.403259 258.874115 237.228101 253.597569 250.883864 259.186768 247.615467 246.447678 254.144292
min 2413.545654 2469.287598 2490.000000 2417.000000 2428.000000 2416.773438 2430.000000 2450.000000 2413.000000
25% 2837.251770 2889.410828 2883.500000 2851.000000 2865.000000 2836.975037 2855.000000 2857.000000 2850.000000
50% 3044.196289 3097.242310 3068.500000 3052.500000 3058.000000 3044.824097 3054.000000 3060.000000 3051.000000
75% 3196.260803 3249.972717 3217.000000 3201.750000 3203.000000 3196.834839 3202.000000 3203.000000 3201.750000
max 3694.253174 3738.977051 3701.000000 3720.000000 3693.000000 3688.330078 3691.000000 3684.000000 3723.000000
df.corr()
COPDEM30 TANDEM DEM3 AW3D30 ASTER COPDEM90 NASADEM SRTM MAPZEN
COPDEM30 1.000000 0.999932 0.998258 0.999679 0.999343 0.999958 0.999358 0.998275 0.999754
TANDEM 0.999932 1.000000 0.998220 0.999633 0.999344 0.999974 0.999342 0.998315 0.999687
DEM3 0.998258 0.998220 1.000000 0.998638 0.998119 0.998282 0.999294 0.997864 0.998774
AW3D30 0.999679 0.999633 0.998638 1.000000 0.999315 0.999660 0.999553 0.998216 0.999819
ASTER 0.999343 0.999344 0.998119 0.999315 1.000000 0.999365 0.999131 0.998518 0.999455
COPDEM90 0.999958 0.999974 0.998282 0.999660 0.999365 1.000000 0.999379 0.998394 0.999700
NASADEM 0.999358 0.999342 0.999294 0.999553 0.999131 0.999379 1.000000 0.998544 0.999643
SRTM 0.998275 0.998315 0.997864 0.998216 0.998518 0.998394 0.998544 1.000000 0.998217
MAPZEN 0.999754 0.999687 0.998774 0.999819 0.999455 0.999700 0.999643 0.998217 1.000000
df_diff.describe()
COPDEM30-TANDEM COPDEM30-DEM3 COPDEM30-AW3D30 COPDEM30-ASTER COPDEM30-COPDEM90 COPDEM30-NASADEM COPDEM30-SRTM COPDEM30-MAPZEN TANDEM-DEM3 TANDEM-AW3D30 ... ASTER-COPDEM90 ASTER-NASADEM ASTER-SRTM ASTER-MAPZEN COPDEM90-NASADEM COPDEM90-SRTM COPDEM90-MAPZEN NASADEM-SRTM NASADEM-MAPZEN SRTM-MAPZEN
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 ... 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean -52.695396 -37.921195 -9.747485 -17.191860 -0.388321 -14.208019 -18.147733 -9.078125 14.774199 42.947910 ... 16.803539 2.983841 -0.955873 8.113735 -13.819699 -17.759413 -8.689804 -3.939714 5.129894 9.069608
std 3.063715 26.573851 8.717534 12.572292 2.387619 14.878318 19.706512 7.750302 26.213201 8.722370 ... 12.309234 10.892745 14.247553 8.953622 14.616837 19.169901 8.057372 13.380009 9.360127 16.809936
min -82.028564 -130.334717 -43.652588 -52.308594 -15.551025 -71.462646 -79.334717 -46.652588 -72.397461 2.486084 ... -21.495605 -40.000000 -69.000000 -30.000000 -69.138428 -73.730957 -44.972168 -69.000000 -51.000000 -69.000000
25% -53.654480 -49.488220 -14.405151 -24.869507 -1.260254 -19.370178 -30.145203 -11.907959 2.716553 38.227905 ... 8.315002 -3.000000 -10.000000 2.000000 -18.632935 -29.375549 -11.912292 -10.000000 -1.000000 1.000000
50% -52.562256 -29.365234 -9.645752 -15.391968 -0.146362 -10.123413 -17.336670 -7.459595 23.847168 43.253540 ... 14.929077 4.000000 0.000000 8.000000 -9.529785 -17.123169 -7.221680 -4.000000 3.000000 10.000000
75% -51.849060 -19.947693 -4.652039 -8.794128 0.533203 -4.427490 -6.655701 -4.448425 32.586426 47.949890 ... 24.004944 9.000000 7.000000 14.000000 -4.234375 -6.643860 -4.038086 1.000000 10.000000 20.750000
max -23.009766 11.646729 23.341553 23.341553 15.591797 27.088867 55.908691 31.172363 63.065674 82.822998 ... 52.883789 55.000000 59.000000 46.000000 27.849121 53.235596 32.682129 59.000000 40.000000 84.000000

8 rows × 36 columns

df_diff.abs().describe()
COPDEM30-TANDEM COPDEM30-DEM3 COPDEM30-AW3D30 COPDEM30-ASTER COPDEM30-COPDEM90 COPDEM30-NASADEM COPDEM30-SRTM COPDEM30-MAPZEN TANDEM-DEM3 TANDEM-AW3D30 ... ASTER-COPDEM90 ASTER-NASADEM ASTER-SRTM ASTER-MAPZEN COPDEM90-NASADEM COPDEM90-SRTM COPDEM90-MAPZEN NASADEM-SRTM NASADEM-MAPZEN SRTM-MAPZEN
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 ... 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 52.695396 37.997709 10.837928 17.918605 1.539755 14.978851 22.048134 9.462017 26.697562 42.947910 ... 17.410436 8.758856 10.924798 9.781231 14.487043 21.517830 9.364936 10.136109 7.451212 15.292107
std 3.063715 26.464294 7.317186 11.512526 1.865470 14.101744 15.215713 7.276508 13.874268 8.722370 ... 11.434442 7.128573 9.193391 7.093540 13.955490 14.826293 7.261413 9.580093 7.641868 11.442731
min 23.009766 0.135986 0.003418 0.000732 0.000732 0.002197 0.003906 0.007568 0.003906 2.486084 ... 0.000977 0.000000 0.000000 0.000000 0.001953 0.012451 0.000488 0.000000 0.000000 0.000000
25% 51.849060 19.947693 5.617004 9.204651 0.342957 5.027039 10.525879 4.625854 16.986389 38.227905 ... 8.656433 3.000000 4.000000 4.000000 4.906738 10.496765 4.394409 3.000000 2.000000 6.000000
50% 52.562256 29.365234 9.821289 15.604980 0.886719 10.341919 19.279541 7.555664 28.024414 43.253540 ... 15.060913 7.000000 9.000000 9.000000 9.772339 18.754150 7.369751 7.000000 4.000000 13.000000
75% 53.654480 49.488220 14.540771 24.869507 2.049927 19.433960 30.630066 12.061157 35.479187 47.949890 ... 24.004944 12.000000 16.000000 14.000000 18.664856 29.730896 12.140320 15.000000 10.000000 23.000000
max 82.028564 130.334717 43.652588 52.308594 15.591797 71.462646 79.334717 46.652588 72.397461 82.822998 ... 52.883789 55.000000 69.000000 46.000000 69.138428 73.730957 44.972168 69.000000 51.000000 84.000000

8 rows × 36 columns

What’s next?#