Compare different DEMs for individual glaciers: RGI-TOPO for RGI v6.0#

For most glaciers in the world there are several digital elevation models (DEM) which cover the respective glacier. In OGGM we have currently implemented more than 10 different open access DEMs to choose from. Some are regional and only available in certain areas (e.g. Greenland or Antarctica) and some cover almost the entire globe.

This notebook allows to see which of the DEMs are available for a selected glacier and how they compare to each other. That way it is easy to spot systematic differences and also invalid points in the DEMs.

Input parameters#

This notebook can be run as a script with parameters using papermill, but it is not necessary. The following cell contains the parameters you can choose from:

# The RGI Id of the glaciers you want to look for
# Use the original shapefiles or the GLIMS viewer to check for the ID: https://www.glims.org/maps/glims
rgi_id = 'RGI60-11.00897'

# The default is to test for all sources available for this glacier
# Set to a list of source names to override this
sources = None
# Where to write the plots. Default is in the current working directory
plot_dir = f'outputs/{rgi_id}'
# The RGI version to use
# V62 is an unofficial modification of V6 with only minor, backwards compatible modifications
prepro_rgi_version = 62
# Size of the map around the glacier. Currently only 10 and 40 are available
prepro_border = 10
# Degree of processing level.  Currently only 1 is available.
from_prepro_level = 1

Check input and set up#

# The sources can be given as parameters
if sources is not None and isinstance(sources, str):
    sources = sources.split(',')
# Plotting directory as well
if not plot_dir:
    plot_dir = './' + rgi_id
import os
plot_dir = os.path.abspath(plot_dir)
import pandas as pd
import numpy as np
from oggm import cfg, utils, workflow, tasks, graphics, GlacierDirectory
import xarray as xr
import rioxarray as rioxr
import geopandas as gpd
import salem
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import itertools

from oggm.utils import DEM_SOURCES
from oggm.workflow import init_glacier_directories
# Make sure the plot directory exists
utils.mkdir(plot_dir);
# Use OGGM to download the data
cfg.initialize()
cfg.PATHS['working_dir'] = utils.gettempdir(dirname='OGGM-DEMS', reset=True)
cfg.PARAMS['use_intersects'] = False
2025-06-05 13:07:57: oggm.cfg: Reading default parameters from the OGGM `params.cfg` configuration file.
2025-06-05 13:07:57: oggm.cfg: Multiprocessing switched OFF according to the parameter file.
2025-06-05 13:07:57: oggm.cfg: Multiprocessing: using all available processors (N=4)
2025-06-05 13:07:58: oggm.cfg: PARAMS['use_intersects'] changed from `True` to `False`.

Download the data using OGGM utility functions#

Note that you could reach the same goal by downloading the data manually from https://cluster.klima.uni-bremen.de/data/gdirs/dems_v2/default (high resolution version: https://cluster.klima.uni-bremen.de/data/gdirs/dems_v1/highres)

# URL of the preprocessed GDirs
gdir_url = 'https://cluster.klima.uni-bremen.de/data/gdirs/dems_v2/default'
# We use OGGM to download the data
gdir = init_glacier_directories([rgi_id], from_prepro_level=1, prepro_border=10, prepro_base_url=gdir_url)[0]
2025-06-05 13:07:58: oggm.workflow: init_glacier_directories from prepro level 1 on 1 glaciers.
2025-06-05 13:07:58: oggm.workflow: Execute entity tasks [gdir_from_prepro] on 1 glaciers

Read the DEMs and store them all in a dataset#

if sources is None:
    sources = [src for src in os.listdir(gdir.dir) if src in utils.DEM_SOURCES]
print('RGI ID:', rgi_id)
print('Available DEM sources:', sources)
print('Plotting directory:', plot_dir)
RGI ID: RGI60-11.00897
Available DEM sources: ['MAPZEN', 'ASTER', 'DEM3', 'TANDEM', 'NASADEM', 'SRTM', 'COPDEM90', 'AW3D30', 'COPDEM30']
Plotting directory: /__w/tutorials/tutorials/notebooks/tutorials/outputs/RGI60-11.00897
# We use xarray to store the data
ods = xr.Dataset()
for src in sources:
    demfile = os.path.join(gdir.dir, src) + '/dem.tif'
    with rioxr.open_rasterio(demfile) as ds:
        data = ds.sel(band=1).load() * 1.
        ods[src] = data.where(data > -100, np.nan)
    
    sy, sx = np.gradient(ods[src], gdir.grid.dx, gdir.grid.dx)
    ods[src + '_slope'] = ('y', 'x'),  np.arctan(np.sqrt(sy**2 + sx**2))

with rioxr.open_rasterio(gdir.get_filepath('glacier_mask')) as ds:
    ods['mask'] = ds.sel(band=1).load()
# Decide on the number of plots and figure size
ns = len(sources)
x_size = 12
n_cols = 3
n_rows = -(-ns // n_cols)
y_size = x_size / n_cols * n_rows

Raw topography data#

smap = salem.graphics.Map(gdir.grid, countries=False)
smap.set_shapefile(gdir.read_shapefile('outlines'))
smap.set_plot_params(cmap='topo')
smap.set_lonlat_contours(add_tick_labels=False)
smap.set_plot_params(vmin=np.nanquantile([ods[s].min() for s in sources], 0.25),
                     vmax=np.nanquantile([ods[s].max() for s in sources], 0.75))

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_mode='each',
                cbar_location='right',
                cbar_pad=0.1
                )

for i, s in enumerate(sources):
    data = ods[s]
    smap.set_data(data)
    ax = grid[i]
    smap.visualize(ax=ax, addcbar=False, title=s)
    if np.isnan(data).all():
        grid[i].cax.remove()
        continue
    cax = grid.cbar_axes[i]
    smap.colorbarbase(cax)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_topo_color.png'), dpi=150, bbox_inches='tight')
../../_images/2955607be113a8ccd3e2b0186da4a27b136f9e175cf234323742318924c34838.png

Shaded relief#

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_location='right',
                cbar_pad=0.1
                )
smap.set_plot_params(cmap='Blues')
smap.set_shapefile()
for i, s in enumerate(sources):
    data = ods[s].copy().where(np.isfinite(ods[s]), 0)
    smap.set_data(data * 0)
    ax = grid[i]
    smap.set_topography(data)
    smap.visualize(ax=ax, addcbar=False, title=s)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_topo_shade.png'), dpi=150, bbox_inches='tight')
../../_images/6dfa5029624d97bd93e2b39d68f7b046069596014ec7a566fab9702a15dbf5b9.png

Slope#

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_mode='each',
                cbar_location='right',
                cbar_pad=0.1
                )

smap.set_topography();
smap.set_plot_params(vmin=0, vmax=0.7, cmap='Blues')

for i, s in enumerate(sources):
    data = ods[s + '_slope']
    smap.set_data(data)
    ax = grid[i]
    smap.visualize(ax=ax, addcbar=False, title=s + ' (slope)')
    cax = grid.cbar_axes[i]
    smap.colorbarbase(cax)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_slope.png'), dpi=150, bbox_inches='tight')
../../_images/f3966068eb3a928c7b48e2064b2b4f89d1b4a8aee35acd1ba4fded6b72489e3a.png

Some simple statistics about the DEMs#

df = pd.DataFrame()
for s in sources:
    df[s] = ods[s].data.flatten()[ods.mask.data.flatten() == 1]

dfs = pd.DataFrame()
for s in sources:
    dfs[s] = ods[s + '_slope'].data.flatten()[ods.mask.data.flatten() == 1]
df.describe()
MAPZEN ASTER DEM3 TANDEM NASADEM SRTM COPDEM90 AW3D30 COPDEM30
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 3023.202610 3031.316346 3052.045681 3066.820068 3028.332505 3032.272219 3014.512695 3023.871970 3014.124512
std 254.144292 250.883864 237.228101 258.874115 247.615467 246.447678 259.186768 253.597569 259.403259
min 2413.000000 2428.000000 2490.000000 2469.287598 2430.000000 2450.000000 2416.773438 2417.000000 2413.545654
25% 2850.000000 2865.000000 2883.500000 2889.410828 2855.000000 2857.000000 2836.975037 2851.000000 2837.251770
50% 3051.000000 3058.000000 3068.500000 3097.242310 3054.000000 3060.000000 3044.824097 3052.500000 3044.196289
75% 3201.750000 3203.000000 3217.000000 3249.972717 3202.000000 3203.000000 3196.834839 3201.750000 3196.260803
max 3723.000000 3693.000000 3701.000000 3738.977051 3691.000000 3684.000000 3688.330078 3720.000000 3694.253174

Comparison matrix plot#

# Table of differences between DEMS
df_diff = pd.DataFrame()
done = []
for s1, s2 in itertools.product(sources, sources):
    if s1 == s2:
        continue
    if (s2, s1) in done:
        continue
    df_diff[s1 + '-' + s2] = df[s1] - df[s2]
    done.append((s1, s2))
# Decide on plot levels
max_diff = df_diff.quantile(0.99).max()
base_levels = np.array([-8, -5, -3, -1.5, -1, -0.5, -0.2, -0.1, 0, 0.1, 0.2, 0.5, 1, 1.5, 3, 5, 8])
if max_diff < 10:
    levels = base_levels
elif max_diff < 100:
    levels = base_levels * 10
elif max_diff < 1000:
    levels = base_levels * 100
else:
    levels = base_levels * 1000
levels = [l for l in levels if abs(l) < max_diff]
if max_diff > 10:
    levels = [int(l) for l in levels]
levels
[-100, -50, -20, -10, 0, 10, 20, 50, 100]
smap.set_plot_params(levels=levels, cmap='PuOr', extend='both')
smap.set_shapefile(gdir.read_shapefile('outlines'))

fig = plt.figure(figsize=(14, 14))
grid = AxesGrid(fig, 111,
                nrows_ncols=(ns - 1, ns - 1),
                axes_pad=0.3,
                cbar_mode='single',
                cbar_location='right',
                cbar_pad=0.1
                )
done = []
for ax in grid:
    ax.set_axis_off()
for s1, s2 in itertools.product(sources, sources):
    if s1 == s2:
        continue
    if (s2, s1) in done:
        continue
    data = ods[s1] - ods[s2]
    ax = grid[sources.index(s1) * (ns - 1) + sources[1:].index(s2)]
    ax.set_axis_on()
    smap.set_data(data)
    smap.visualize(ax=ax, addcbar=False)
    done.append((s1, s2))
    ax.set_title(s1 + '-' + s2, fontsize=8)
    
cax = grid.cbar_axes[0]
smap.colorbarbase(cax);

plt.savefig(os.path.join(plot_dir, 'dem_diffs.png'), dpi=150, bbox_inches='tight')
../../_images/3d06209ec71c7be26102cd76f86b36e25f1b9b501b74536539fdcacbccbdc69f.png

Comparison scatter plot#

import seaborn as sns
sns.set(style="ticks")

l1, l2 = (utils.nicenumber(df.min().min(), binsize=50, lower=True), 
          utils.nicenumber(df.max().max(), binsize=50, lower=False))

def plot_unity(xdata, ydata, **kwargs):
    points = np.linspace(l1, l2, 100)
    plt.gca().plot(points, points, color='k', marker=None,
                   linestyle=':', linewidth=3.0)

g = sns.pairplot(df.dropna(how='all', axis=1).dropna(), plot_kws=dict(s=50, edgecolor="C0", linewidth=1));
g.map_offdiag(plot_unity)
for asx in g.axes:
    for ax in asx:
        ax.set_xlim((l1, l2))
        ax.set_ylim((l1, l2))

plt.savefig(os.path.join(plot_dir, 'dem_scatter.png'), dpi=150, bbox_inches='tight')
../../_images/d2b5979c96dc5e44cc33340017c9a369ca53ae9910b0f4a5e780723be362c56d.png

Table statistics#

df.describe()
MAPZEN ASTER DEM3 TANDEM NASADEM SRTM COPDEM90 AW3D30 COPDEM30
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 3023.202610 3031.316346 3052.045681 3066.820068 3028.332505 3032.272219 3014.512695 3023.871970 3014.124512
std 254.144292 250.883864 237.228101 258.874115 247.615467 246.447678 259.186768 253.597569 259.403259
min 2413.000000 2428.000000 2490.000000 2469.287598 2430.000000 2450.000000 2416.773438 2417.000000 2413.545654
25% 2850.000000 2865.000000 2883.500000 2889.410828 2855.000000 2857.000000 2836.975037 2851.000000 2837.251770
50% 3051.000000 3058.000000 3068.500000 3097.242310 3054.000000 3060.000000 3044.824097 3052.500000 3044.196289
75% 3201.750000 3203.000000 3217.000000 3249.972717 3202.000000 3203.000000 3196.834839 3201.750000 3196.260803
max 3723.000000 3693.000000 3701.000000 3738.977051 3691.000000 3684.000000 3688.330078 3720.000000 3694.253174
df.corr()
MAPZEN ASTER DEM3 TANDEM NASADEM SRTM COPDEM90 AW3D30 COPDEM30
MAPZEN 1.000000 0.999455 0.998774 0.999687 0.999643 0.998217 0.999700 0.999819 0.999754
ASTER 0.999455 1.000000 0.998119 0.999344 0.999131 0.998518 0.999365 0.999315 0.999343
DEM3 0.998774 0.998119 1.000000 0.998220 0.999294 0.997864 0.998282 0.998638 0.998258
TANDEM 0.999687 0.999344 0.998220 1.000000 0.999342 0.998315 0.999974 0.999633 0.999932
NASADEM 0.999643 0.999131 0.999294 0.999342 1.000000 0.998544 0.999379 0.999553 0.999358
SRTM 0.998217 0.998518 0.997864 0.998315 0.998544 1.000000 0.998394 0.998216 0.998275
COPDEM90 0.999700 0.999365 0.998282 0.999974 0.999379 0.998394 1.000000 0.999660 0.999958
AW3D30 0.999819 0.999315 0.998638 0.999633 0.999553 0.998216 0.999660 1.000000 0.999679
COPDEM30 0.999754 0.999343 0.998258 0.999932 0.999358 0.998275 0.999958 0.999679 1.000000
df_diff.describe()
MAPZEN-ASTER MAPZEN-DEM3 MAPZEN-TANDEM MAPZEN-NASADEM MAPZEN-SRTM MAPZEN-COPDEM90 MAPZEN-AW3D30 MAPZEN-COPDEM30 ASTER-DEM3 ASTER-TANDEM ... NASADEM-SRTM NASADEM-COPDEM90 NASADEM-AW3D30 NASADEM-COPDEM30 SRTM-COPDEM90 SRTM-AW3D30 SRTM-COPDEM30 COPDEM90-AW3D30 COPDEM90-COPDEM30 AW3D30-COPDEM30
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 ... 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean -8.113735 -28.843070 -43.617270 -5.129894 -9.069608 8.689804 -0.669360 9.078125 -20.729335 -35.503534 ... -3.939714 13.819699 4.460534 14.208019 17.759413 8.400249 18.147733 -9.359164 0.388321 9.747485
std 8.953622 20.831143 7.972539 9.360127 16.809936 8.057372 4.859039 7.750302 20.258841 12.211383 ... 13.380009 14.616837 9.588316 14.878318 19.169901 16.555147 19.706512 8.710851 2.387619 8.717534
min -46.000000 -116.000000 -85.858154 -40.000000 -84.000000 -32.682129 -35.000000 -31.172363 -105.000000 -79.663330 ... -69.000000 -27.849121 -48.000000 -27.088867 -53.235596 -75.000000 -55.908691 -41.972168 -15.591797 -23.341553
25% -14.000000 -37.000000 -48.300476 -10.000000 -20.750000 4.038086 -3.000000 4.448425 -27.000000 -43.959106 ... -10.000000 4.234375 -2.000000 4.427490 6.643860 -1.000000 6.655701 -14.219543 -0.533203 4.652039
50% -8.000000 -23.000000 -45.182861 -3.000000 -10.000000 7.221680 -1.000000 7.459595 -18.000000 -37.429810 ... -4.000000 9.529785 3.000000 10.123413 17.123169 9.000000 17.336670 -9.151611 0.146362 9.645752
75% -2.000000 -15.000000 -40.532715 1.000000 -1.000000 11.912292 1.000000 11.907959 -10.000000 -28.404724 ... 1.000000 18.632935 8.000000 19.370178 29.375549 20.000000 30.145203 -4.334778 1.260254 14.405151
max 30.000000 22.000000 -1.023926 51.000000 69.000000 44.972168 28.000000 46.652588 42.000000 0.389160 ... 59.000000 69.138428 38.000000 71.462646 73.730957 79.000000 79.334717 29.402100 15.551025 43.652588

8 rows Ă— 36 columns

df_diff.abs().describe()
MAPZEN-ASTER MAPZEN-DEM3 MAPZEN-TANDEM MAPZEN-NASADEM MAPZEN-SRTM MAPZEN-COPDEM90 MAPZEN-AW3D30 MAPZEN-COPDEM30 ASTER-DEM3 ASTER-TANDEM ... NASADEM-SRTM NASADEM-COPDEM90 NASADEM-AW3D30 NASADEM-COPDEM30 SRTM-COPDEM90 SRTM-AW3D30 SRTM-COPDEM30 COPDEM90-AW3D30 COPDEM90-COPDEM30 AW3D30-COPDEM30
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 ... 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 9.781231 29.093536 43.617270 7.451212 15.292107 9.364936 3.354257 9.462017 22.658484 35.503776 ... 10.136109 14.487043 7.379117 14.978851 21.517830 14.691734 22.048134 10.511262 1.539755 10.837928
std 7.093540 20.479767 7.972539 7.641868 11.442731 7.261413 3.578254 7.276508 18.074653 12.210679 ... 9.580093 13.955490 7.574302 14.101744 14.826293 11.346579 15.215713 7.278676 1.865470 7.317186
min 0.000000 0.000000 1.023926 0.000000 0.000000 0.000488 0.000000 0.007568 0.000000 0.389160 ... 0.000000 0.001953 0.000000 0.002197 0.012451 0.000000 0.003906 0.000977 0.000732 0.003418
25% 4.000000 15.000000 40.532715 2.000000 6.000000 4.394409 1.000000 4.625854 11.000000 28.404724 ... 3.000000 4.906738 2.000000 5.027039 10.496765 5.000000 10.525879 5.184937 0.342957 5.617004
50% 9.000000 23.000000 45.182861 4.000000 13.000000 7.369751 2.000000 7.555664 19.000000 37.429810 ... 7.000000 9.772339 5.000000 10.341919 18.754150 13.000000 19.279541 9.402832 0.886719 9.821289
75% 14.000000 37.000000 48.300476 10.000000 23.000000 12.140320 4.000000 12.061157 27.000000 43.959106 ... 15.000000 18.664856 10.000000 19.433960 29.730896 22.000000 30.630066 14.364990 2.049927 14.540771
max 46.000000 116.000000 85.858154 51.000000 84.000000 44.972168 35.000000 46.652588 105.000000 79.663330 ... 69.000000 69.138428 48.000000 71.462646 73.730957 79.000000 79.334717 41.972168 15.591797 43.652588

8 rows Ă— 36 columns

What’s next?#